Technologies for In-line Monitoring of Micro-Holes in Packaging - FoodSafetyTech

2022-05-10 09:02:22 By : Mr. Hubert Hu

Checking for the presence of micro-holes in the packaging, is crucial to avoid thwarting all efforts to optimize the packaging’s preservation mixture. This article discusses how to perform a seal test, and the innovations brought about by IR spectroscopy technology that introduce important elements of in-line monitoring of the presence of micro-holes in packaging and the seal’s integrity.

In-line verification for the presence of micro-holes throughout food packaging production is possible by means of an innovative application of IR (Infrared) spectroscopy, or via gas sensors capable of detecting the leakage of target molecules present inside packages.

The areas of application sectors can be modified atmosphere packaging (MAP) packaged products, bakery products preserved with alcohol, food products preserved in nitrogen or air whose release of aromas can be detected.

Today, there are many preservation technologies available on the market for packaged food that lengthen the product’s shelf life while ensuring its organoleptic characteristics and food safety. Replacing air with a gas mixture (MAP) or with nitrogen, or by adding alcohol, are some preservation methods that cover a wide range of products. For all products, it is essential to check:

This last point, checking for the presence of micro-holes in the packaging, is crucial to avoid thwarting all efforts to optimize the packaging’s preservation mixture. Therefore, let’s examine how it is possible to perform a seal test, and the innovations brought about by IR spectroscopy technology that introduce important elements of in-line monitoring of the presence of micro-holes in packaging and the seal’s integrity.

The presence of a micro-hole in packaging is a particularly critical problem in the food industry, since it can lead to poor food preservation and the loss of its organoleptic characteristics—as well as the possible formation of mold.

Micro-holes may form as a result of defective sealing processes or during the various processing stages of the package, and can lead to negative consequences of the product days later, when the package is already in the shop or on the shelf of a supermarket. Therefore, it is important to make sure the container is intact during the production stage.

The procedures normally in use today to check for micro-holes are spot checks, which detect the loss of pressure or leakage of gas from the package by immersing the product in water, or via an instrument that applies a “dry” vacuum. In the first case, which is called a bubble test, the product is immersed in a container filled with water that is hermetically sealed and to which an external vacuum is applied. This encourages bubbles to come out from any micro-holes, which can, at this point, be checked visually or by means of a camera.

In the second case, a vacuum is created that is carried out by placing the package inside a bell. The molecules leaked from the package (such as CO2 in the case of MAP products) or loss of pressure are indications of the presence of a micro-hole.

The main limitation of these methods is, first and foremost, that of being destructive, since it is no longer possible to reuse the tested package. Over and above this is the fact that they are, of course, merely spot checks—and therefore not comprehensive in their analysis.

Spot-checking does not check the integrity of the entire production, which means that defects are not detected on a regular basis. Moreover, this method is costly in terms of re-processing batches should a micro-hole be detected in the batch being tested.

The need for in-line identification of micro-holes on 100% of production is pressing, and research for possible solutions has been focused on this need in recent years. Technology is needed that must be:

This has all been made possible by means of application of IR spectroscopy, or the use of gas sensors for in-line inspection of the presence of holes and micro-holes. These non-destructive technologies make it possible to detect in-line leakages in packaging, package by package, by identifying target escaping molecules.

The air around the package is extracted and taken to an analysis chamber containing an IR beam or gas sensor that can detect the presence of target molecules—and therefore micro-holes. This way, it is possible to automatically inspect every single package, avoiding problems of returns and consumer dissatisfaction caused by poor preservation.

The technologies that enable in-line inspection are based on nondispersive infrared technology, which offer rapid response times and reliable measured values. In the case of very small leakages, measurements with very low concentration differences or measurements by means of containers, the technology is based on the principle of laser spectroscopy.

A monochromatic radiation beam emitted by a laser interacts with the gas molecules being measured. The radiation wavelength coincides with one of the absorption lines of the molecule. Measuring the intensity and absorption profile of the radiation with a photodetector makes it possible to detect the presence of a gas, and determine the concentration of the molecule being measured.

For certain gases, the high sensitivity of measurement can be obtained by using a modulation technique of the absorption measurement known as wavelength modulation spectroscopy (WMS). It involves transmitting sinusoidal modulation to the wavelength variation of the laser radiation, then creating a beat between the signal detected from the photodetector and the modulation frequency.

The distinct advantage of WMS is that it eliminates constant contributions to the absorption, such as that of the container, thereby making it possible to significantly increase the sensitivity of the measurement. The realization of gas sensors for application in the pharmaceutical, bottling and food sectors originated at Italy’s University of Padua, where lasers have been employed to create laboratory prototypes for determining the concentration of gas pressure using absorption spectroscopy techniques.

Industrial application of these technologies has brought IR and laser spectroscopy technology to the market and into production lines, improving the way in which quality control is performed on packaged products. The non-destructive measurement techniques, based on absorption spectroscopy, are today finding new areas of use—not only to monitor package leakages, but also to monitor the internal gases and check their evolution during product shelf life.

Let’s explore an example of micro-hole inspection via IR spectroscopy and gas sensors, and how certain challenges might be overcome.

For one company, micro-hole inspection technology was initially working by detecting molecules leaking from packages being transferred on conveyor belts. However, during the technology transfer stage, it became evident that the pressure difference between inside and outside of the container was not enough to determine the presence of micro-holes at the line’s speed without touching the package.

To combat this, a system of rollers was implemented to apply the correct pressure to force leakage of target molecules, indicating the presence of micro-holes, without damaging the packaging or the product. The rollers are designed to stress the container and the seals to encourage gas to be released in the event of a leak.

The inspection is applicable on trays as well as bags or flowpacks. Packages are inspected at 360°, both on top and at the bottom (including any longitudinal seals) by inserting air extractors also on the sides and under the package, creating a special opening in the conveyor belts.

The target molecules that can be detected with these technologies are numerous, and vary according to the type of preservation mixture. For example, it is possible to detect CO2 as a target molecule for all MAP-preserved products, or alcohol in the case of bakery products, or specific product aromas for products packaged in air or nitrogen.

The in-line inspection for micro-holes in packaging through the application of IR spectroscopy, or by means of gas sensors, makes it possible to go from spot checks to in-line inspections on 100% of production. The solution can be applied on trays and bags and does not require the internal gas mixture or the line speed to be changed. It can be easily integrated in existing lines and inspection is reliable, precise and repeatable.

This quality control technology has game-changing potential for products preserved in MAP, alcohol or nitrogen, since it makes it possible to check for micro-holes in the packaging and the integrity of the seal on each individual product. From practical experience in the production line, it is evident that all micro-holes are not detected by spot checks.

In addition, a return or recall, for example for the presence of mold in fresh pasta or in cheese due to a micro-hole, causes significant economic and image damage for the company. Implementing this modern application of IR spectroscopy in the line thereby makes it possible to prevent and intervene in real time on the production process to guarantee the integrity of the package and avoid problems related to safety, quality and preservation.

Following a consumer’s allergic reaction, Eataly recalls its artichoke spread for undeclared walnuts.

A group of physicians, scientists, environmental and public health groups are demanding that the agency set stringent limits on the use of bisphenol A in plastics that come into contact with food.

Unreliable packaging can pose a problem for product safety.

The law expands the definition of major food allergen to include sesame.

Paolo Tondello is product specialist, gas sensing applications for FT System. FT System is part of Antares Vision Group), which protects products throughout their lifecycles via comprehensive solutions in inspection, track & trace and smart data management. After earning a degree in electrical engineering from the University of Padua, in 2007 Tondello founded L-pro, a company focused on implementing industrial applications for laser spectroscopy technologies. The company became part of FT System in 2012.

Your email address will not be published. Required fields are marked *

For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use. I agree to these terms.

For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

I agree to these terms.

The past two years have pushed food companies to the limit, as they have worked tirelessly to ensure that safe, quality food is delivered to the consumer amidst a global pandemic that continues. This virtual event brings together subject matter experts with decades of experience at food companies who will help you recognize when and how to pivot in the face of global supply chain issues, how to be nimble during these challenges, and how to establish the adaptable mindset required to navigate these ever-changing circumstances.

The CDC estimates that nearly 48 million people fall ill and 3000 people die annually as a result of foodborne illness. Listeria is a concern due to the high percentage of fatalities that occur as a result of contracting Listeriosis. Many of these cases are preventable. During this virtual event, experts will discuss tangible best practices in Listeria detection, mitigation and control.

The CQC is a business-to-business conference and expo where cannabis industry leaders and stakeholders meet to build the future of the cannabis marketplace.

Back in person this year, the 10th annual Food Safety Consortium is an educational and networking event for Food Protection that has food safety, food integrity and food defense as the foundation of the educational content of the program. With a unique focus on science, technology and compliance, the “Consortium” enables attendees to engage in conversations that are critical for advancing careers and organizations alike. Delegates visit with sponsors & exhibitors to learn about cutting-edge solutions, explore three high-level educational tracks for learning valuable industry trends, and network with industry executives to find solutions to improve quality, efficiency and cost effectiveness in the evolving food industry.

© Copyright 2015 - 2022 Innovative Publishing Co. Inc., All Rights Reserved

Sign up for our FREE newsletters and get the top stories from FST right in your email inbox.

Food Safety Tech is the leading online trade journal. Join the Food Safety Tech community and stay engaged the way you want to!

We are using cookies to give you the best experience on our website.

You can find out more about which cookies we are using or switch them off in settings .

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.

We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.

We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.

If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.

Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.

Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.

In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.

You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.

Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.

The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.